Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMC Med ; 21(1): 160, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2305952

ABSTRACT

BACKGROUND: The two inactivated SARS-CoV-2 vaccines, CoronaVac and BBIBP-CorV, have been widely used to control the COVID-19 pandemic. The influence of multiple factors on inactivated vaccine effectiveness (VE) during long-term use and against variants is not well understood. METHODS: We selected published or preprinted articles from PubMed, Embase, Scopus, Web of Science, medRxiv, BioRxiv, and the WHO COVID-19 database by 31 August 2022. We included observational studies that assessed the VE of completed primary series or homologous booster against SARS-CoV-2 infection or severe COVID-19. We used DerSimonian and Laird random-effects models to calculate pooled estimates and conducted multiple meta-regression with an information theoretic approach based on Akaike's Information Criterion to select the model and identify the factors associated with VE. RESULTS: Fifty-one eligible studies with 151 estimates were included. For prevention of infection, VE associated with study region, variants, and time since vaccination; VE was significantly decreased against Omicron compared to Alpha (P = 0.021), primary series VE was 52.8% (95% CI, 43.3 to 60.7%) against Delta and 16.4% (95% CI, 9.5 to 22.8%) against Omicron, and booster dose VE was 65.2% (95% CI, 48.3 to 76.6%) against Delta and 20.3% (95% CI, 10.5 to 28.0%) against Omicron; primary VE decreased significantly after 180 days (P = 0.022). For the prevention of severe COVID-19, VE associated with vaccine doses, age, study region, variants, study design, and study population type; booster VE increased significantly (P = 0.001) compared to primary; though VE decreased significantly against Gamma (P = 0.034), Delta (P = 0.001), and Omicron (P = 0.001) compared to Alpha, primary and booster VEs were all above 60% against each variant. CONCLUSIONS: Inactivated vaccine protection against SARS-CoV-2 infection was moderate, decreased significantly after 6 months following primary vaccination, and was restored by booster vaccination. VE against severe COVID-19 was greatest after boosting and did not decrease over time, sustained for over 6 months after the primary series, and more evidence is needed to assess the duration of booster VE. VE varied by variants, most notably against Omicron. It is necessary to ensure booster vaccination of everyone eligible for SARS-CoV-2 vaccines and continue monitoring virus evolution and VE. TRIAL REGISTRATION: PROSPERO, CRD42022353272.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Regression Analysis , Vaccines, Inactivated
2.
Disease Surveillance ; 37(11):1389-1392, 2022.
Article in Chinese | GIM | ID: covidwho-2201092

ABSTRACT

Objective: To assess the risk of public health emergencies, both the indigenous ones and the imported ones, which might occur in the mainland of China in November 2022.

3.
iScience ; 24(4): 102293, 2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1203085

ABSTRACT

Recently, COVID-19 caused by the novel coronavirus SARS-CoV-2 has brought great challenges to the world. More and more studies have shown that patients with severe COVID-19 may suffer from cytokine storm syndrome; however, there are few studies on its pathogenesis. Here we demonstrated that SARS-CoV-2 coding protein open reading frame 8 (ORF8) acted as a contributing factor to cytokine storm during COVID-19 infection. ORF8 could activate IL-17 signaling pathway and promote the expression of pro-inflammatory factors. Moreover, we demonstrated that treatment of IL17RA antibody protected mice from ORF8-induced inflammation. Our findings are helpful to understand the pathogenesis of cytokine storm caused by SARS-CoV-2 and provide a potential target for the development of COVID-19 therapeutic drugs.

SELECTION OF CITATIONS
SEARCH DETAIL